## Maths Long Term Plan

## Archbishop Runcie CE First School

Updated Jan 2024


## Vision

The school first existed as a force for social change and we remember this within our historic original mission as we continue to inspire and transform the minds and hearts of everyone we serve today and, thus, the wider world. Everyone associated with our school will experience life in all its fullness, as promised by Jesus. We do so with Love and Determination.

## Our original Mission

"A school for the education of children only of the labouring mining and manufacturing and other poorer classes in the Parish of Gosforth and for no other purpose."

## Mission Statement:

At ARFS, we promote educational excellence, for everyone. Our purpose in education is to enable the children, families, staff, Governors and the wider community we serve to flourish. The Christian values of Love and Determination are at the core of teaching and culture within the school. We believe this makes us distinctive in the learning experience on offer. This is firmly rooted in the following epistle:

Be on your guard; stand firm in the faith; be courageous; be strong.
1 Corinthians 16:13-14

## Intent

At Archbishop Runcie CE First School, we recognise that Mathematics is more than just a core subject - it is a universal language that enables understanding of the world, providing important tools for fields like engineering, physics, architecture, medicine and business, developing children's abilities to think logically and methodically (Ofsted Research Review, 2021).
Mathematics is celebrated as a way for children of all ages to think in new ways now and help change the world in the future, a key part of ensuring children can experience life in all its fullness. In Early Years, we believe that developing practitioners' own understanding of mathematics, their understanding of how children typically learn, and how this relates to effective pedagogy is essential for laying the foundations for learning

For Key Stage 1 and 2, the study of Maths is a combination of declarative knowledge, procedural knowledge and conditional knowledge

| Knowledge: | How do children know it? |  | Examples: |
| :--- | :--- | :--- | :--- |
| Declarative <br> 'I know that' | Facts and <br> formulae | Relationship <br> between facts <br> (conceptual <br> understanding) | I know that... <br> $3 \times 5=15$ |

## Implementation

At Archbishop Runcie, we have a daily dedicated maths teaching input from Nursery to Year 4. Research tells us a sequential curriculum provides better results and allows teachers to focus on concepts and small steps being taught, rather than designing a sequences of learning. In school, we follow White Rose Maths small steps (alongside other schools within the Gosforth Schools' Trust including Gosforth Central Middle School that the vast majority of our children will continue onto), this is supplemented with supporting material from Master the Curriculum

In Early Years, maths is also woven into the school day, to allow children to learn mathematical skills through their environment and routines, exposing them and extending their mathematical thinking.

Ten Town (rhymes, visuals and stories) is used to support number recognition and correct number formation; explicit teaching of correct number formation helps to effectively prepare children for Year 1.

In Key Stage 1 and 2, in addition to multiplication and division units of learning, times table knowledge is taught explicitly. This is further enhanced through intervention sessions and use of Times Table Rockstars; this ensures children are prepared for the statutory multiplication tables check (MTC) at the end of Year 4 and embeds their declarative knowledge.

This curriculum is focused on automaticity of declarative knowledge, then using this to formulate methods (procedural knowledge) with all children being exposed to problem solving (which requires conditional knowledge). In

## Impact and Next Steps

The impact of the our maths curriculum will be that:

- Children will become fluent in all basic skills, including times tables, and are able to apply this fluency to more complex reasoning problems.
- Children are equipped for the next stage of their education
- Children retain important knowledge and attain fluency in multiplication tables
- Children can confidently use a variety of 'maths knowledge statements' and language as detailed in the Calculation Policy.
- Children are resilient learners with a positive growth mindset

| Conditional <br> 'I know when' | Strategies | Relationship <br> between <br> information, <br> strategies and <br> missing <br> information <br> (reasoning) | I know when I <br> have $£ 15.25$ and <br> I divide it by 5 <br> that I have 300p <br> with a remainder <br> of 25p |
| :--- | :--- | :--- | :--- |

This means that reasoning and problem solving are not 'generic skills' but instead require deep bodies of declarative and procedural knowledge that can then be applied to problems when understood properly.

In order to facilitate this, the school follows a mastery approach - this means children across all classes acquiring a deep, longterm, secure and adaptable understanding of the subject. There are a number of key principles that underpin this:

- That all children who work hard at Maths can succeed
- It rejects the idea that groups of children 'just can't do Maths'
- That whole-class teaching, with all children working together on the same concept at the same time, is required before the class can move on
- If a pupil fails to grasp a concept or procedure, this is identified quickly and early intervention ensures the pupil is ready to move forward with the whole class
- A typical lesson teaches the small step, with retrieval opportunities to consolidate prior learning and previous small steps that have been developed in a sequence of learning. Generally, pupils sit facing the teacher and the teacher leads back and forth interaction, including questioning, short tasks, explanation, demonstration, and discussion
- Key facts such as multiplication tables and addition facts within 10 are learnt to automaticity to avoid cognitive
addition, leaders and staff know that children's capabilities to solve word problems are not just reliant on these three areas of knowledge but also proficiency in reading.

In Early Years, picture books are used to discuss mathematical ideas and extend thinking. We have mapped out quality picture books to use each week to support dedicated daily teaching time as well as rhymes and songs (EEF Improving Mathematics in Early Years and Key Stage 1).

Maths vocabulary, symbols and methods are carefully sequenced and also standardised through the calculation policy.

As per the school's historic and current mission, vision, values and ethos, there is a clear focus in equity - as such, differentiation is not a tool that staff use often. Instead, there is a focus on 'keep up' rather than 'catch up', with all children exposed to the same learning. This is made possible by there being additional time built into the curriculum plans (consolidation weeks).

We use concrete, practical resources to ensure that children are introduced to difficult mathematical ideas in a more 'hands on' approach to embed their learning. Using concrete resources is key to conceptual understanding Initially supported, children can use these practical resources if and when they need them throughout the small steps of learning. Pictorial representations allow children to make links between the practical resources and mathematical concepts. This is a key stepping stone before using more abstract mathematical notations.
Manipulatives and representations are used to effectively develop and deepen understanding. In Years 1-4, key

- During their time at Archbishop Runcie, children continue to move through a progressive curriculum which enables them to build on the skills and knowledge effectively preparing them for their next step in their learning. Children are provided opportunities to revisit and consolidate small steps of learning
- Beyond Archbishop Runcie, children leave the school ready for the next phase of learning and will have the skills to apply their learning to a wide range of problems in real life
- Beyond their school life, Children have developed skills in logical and methodical thinking they can take with


## Long Term Plan

Each long term plan is dependent on the number of weeks in each term. Teachers will ensure that there is enough coverage throughout the unit to ensure that units are complete before each half term. How the small steps are covered within the units are at the teachers' discretion dependent on the needs of the class but must be planned effectively to ensure that coverage and pace is appropriate.

## Key:

| Unit of learning: | Colour code: |
| :--- | :--- |
| Number |  |
| Measurement |  |
| Geometry |  |
| Statistics |  |
| Consolidation |  |
| Discrete declarative knowledge |  |
| Additional Maths opportunities |  |

## Nursery

| $\begin{aligned} & \text { ㄷ } \\ & \text { E } \\ & 5 \\ & 3 \\ & 4 \end{aligned}$ | Autumn 1 |  |  |  |  |  | Autumn 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Colours: <br> Red <br> Blue <br> Yellow | Colours: <br> Green <br> Purple <br> Mix of colours | Match: <br> Buttons and colours | Match: <br> Match <br> number <br> shapes <br> Match <br> shapes <br> Patterns | Sort: Colour Size Shape | Sort: What do you notice? | Number 1 |  | er 2 | Pattern - AB | Pattern - <br> ABC | Consolidatio n activities |
|  | Spring 1 |  |  |  |  |  | Spring 2 |  |  |  |  |  |
|  | Number 3 |  | Number 4 |  | Number 5 |  | Consolidate numbers 1 5 | Number 6 | Length and height | Mass | Capacity | Consolidatio n activities |
|  | Summer 1 |  |  |  |  |  | Summer 2 |  |  |  |  |  |
|  | Sequencing | Positional language | More than/fewer than | 2D shape <br> Revisit pattern from Autumn term | 3D shape Revisit pattern from Autumn term | Consolidatio <br> n: more than/fewer than One more/one less | Numbers 1 5 composition | What comes after? | What comes before? | $\begin{gathered} \text { Numbers to } \\ 5 \end{gathered}$ | Consolid Ready for | n activities Reception |

## Reception

| $\begin{aligned} & \text { 도 } \\ & 5 \\ & 5 \\ & 3 \\ & 4 \end{aligned}$ | Autumn 1 |  |  |  |  | Autumn 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Settling into Reception | Pattern - match and sort |  | Numbers 1-5 | Comparing groups Numbers 6 10 | One more | One less | Addition | Assessmen $t$ and consolidati on | Subtractio n | Pattern height, length and distance |
|  | Spring 1 |  |  |  |  | Spring 2 |  |  |  |  |  |
|  | 2D shapes | Addition |  | Subtraction | Number bonds to 10 | Numbers 0-20 |  | Assessmen t and consolidati on | 3D shapes | Weight | Capacity |
|  |  |  | Sum |  |  |  |  | Sum | er 2 |  |  |
| $\begin{aligned} & \text { む } \\ & \text { E } \\ & \text { E } \\ & \text { U } \end{aligned}$ | Doubling sha | halving, $g$ | Measuring | Problem solving | Height, length and distance |  | Look |  | ation <br> those who ion | ready |  |

Year 1

| $$ |  |  |  | Autumn 2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Place value |  |  | Addition and subtraction |  |  | Shape | ¢ 0 |
|  | Discrete declarative knowledge: Number Bonds to 5 (addition \& subtraction) <br> Subitising | Days of the week | https://www.you tube.com/watch? $\mathrm{v}=4 \mathrm{VZLVcYsaQk}$ | Discrete declarative knowledge: Number Bonds to 10 (addition \& subtraction) |  |  | Months of the year |  |
| $\begin{aligned} & \text { on } \\ & . \frac{1}{2} \\ & \text { n } \end{aligned}$ | Spring 1 |  |  | Spring 2 |  |  |  |  |
|  | Place value (within 20) | STEM WEEK |  | Place value (within 50) | Length and height |  | Mass and volume |  |
|  | Discrete declarative knowledge: Number Bonds to 20 (addition \& subtraction) |  | Counting in 2 s <br> Doubles and halves | Rote count to 100 | Counting in 10s |  | Counting in 5s |  |
|  | Summer 1 |  |  | Summer 2 |  |  |  |  |
|  | Multiplication and division | Fractions | [10 | Place value (within 100) | Money |  |  | [ |
|  | Discrete declarative knowledge: 2 $x$ table | Discrete declarat $x \text { tc }$ | e knowledge: 10 le | Discrete declarative knowl Bonds to 100 (addition \& | : Number traction) | Discre | larative <br> $5 \times$ table | wledge: |

## Year 2 (to be changed in 2024-25)

Year 2's curriculum is different to the other year groups due to SATS in Summer 1. This means that the most important content is front-loaded to ensure children are confident in accessing the questions within the SATS papers

| $$ | Autumn 1 |  | Autumn 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Place value | Addition and subtraction | Money | Multiplication and division |  |
| Discrete declarative knowledge | Double and halve | 2 <br> \& subtraction) | Count in steps of 5 and 10 |  |  |


| $\begin{aligned} & \text { on } \\ & . \frac{1}{0} \\ & \text { n } \end{aligned}$ | Spring 1 |  |  | Spring 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Multiplication and division | Statistics | Shape <br> STEM WEEK | Fractions | Time |  |
| Discrete declarative knowledge | Multiplication and division facts for 5 \& 10 times tables | Number bonds to 10, 20, 100 (addition \& subtraction) |  | Multiplication and division facts for 2, 5 \& 10 times tables |  |  |


| 㐫 | Summer 1 |  |  | Summer 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Length and Height/reading scales | Position and direction | Consolidation | Mass, capacity and temperature <br> SATS | Consolidation |


| Discrete <br> declarative <br> knowlege | Multiplication and division facts for <br> up to $6 \times 3$ (first half of $3 \times$ table) | Recap $2 \times 5 \times, 10 \times$ facts | Multiplication and division <br> facts for up to $12 \times 3$ (second <br> half of $3 \times$ times table) | Recap $2 \times, 3 \times, 5 \times, 10 \times$ facts |
| :---: | :---: | :---: | :---: | :--- |

## Year 3



## Year 4

The Year 4 statutory multiplication check occurs in week 1-2 of Summer 2, so time is given for multiplication consolidation in this week.


## Maths Calculation Policy <br> Archbishop Runcie CE First School



## What does Maths look like at Archbishop Runcie First School?

At Archbishop Runcie CE First School, we see Maths as a journey and therefore ensure consistency across the school. Each classroom has a selection of age and unit appropriate concrete resources to scaffold learning; these resources are progressive and mapped out throughout each year group.

## Methods of calculation used across the school

|  | Concrete | Pictorial | Abstract | Key vocabulary |
| :---: | :---: | :---: | :---: | :---: |
| Place value | - Use of Base 10 to represent place value of numbers <br> - Place value grids with Base 10 representations <br> - Place value grids with place value counters <br> - Numicon | - Place value grids with drawn Base 10/place value counters/plain counters <br> - Ten Town for number formation | - Numbers written in books, one digit per square <br> - Some chn may feel comfortable writing Th, H, T, O above each digit | thousands, hundreds, tens, ones, partition, portioning, part, whole, subatise |
| Addition | - Cubes and double sided counters and Numicon to show parts and wholes e.g. four is a part, 3 is a part. The whole is <br> 7. <br> - Use of Tensframe and counters to visualise making next 10 <br> - Base 10 | - Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on <br> - Part whole models to help to build calculations <br> - Squares, lines and dots to represent hundreds, tens and ones $\begin{aligned} & \because+\therefore=\therefore \\ & \\|\mid+\\|\\|=\\|\\|\\|\\| \end{aligned}$ | - Abstract equations e.g. $4+3=7$ <br> - Use of partitioning thousands, hundreds and tens in an equation to make working out simpler <br> Eg. $45+22=$ <br> 405202 $\begin{aligned} & 40+20=60 \\ & 5+2=7 \\ & 60+7=67 \quad \text { Therefore } 45+22=67 \end{aligned}$ <br> - Use of column method for children who are confident | addition, add, plus, total, altogether, combine, sum, increase, fact family |


|  |  | －Pictorial representations begin to model column methods in preparation for more formal written methods in future | $\begin{array}{r} 425 \\ +321 \\ \hline 746 \\ \hline \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Subtraction | －Use of cubes，double sided counters and Numicon to encourage inverse and parts／wholes to ensure children understand number sentence fully <br> －Children physically remove amount being subtracted using concrete resources <br> －Use of Base 10 to exchange 1 ten stick for 10 ones， 1 hundred for 10 tens，etc when exchanging | －Bar models used to show difference and help with missing number problems <br> The bor model shows information about children in a class． | －Abstract equations e．g． $7-3=4$ <br> －Abstract equations consisting of missing numbers to encourage use of inverse method <br> －Use of column method for children who are confident $\begin{array}{r} 621 \\ -318 \\ \hline 303 \\ \hline \end{array}$ | subtract，minus，difference，take away， decrease，inverse，fact family |
| Multiplication | －Use of Numicon，cubes and counters to physically make equal groups and count equal groups made | －Equal groups are written／drawn pictorially e．g．use of triangles for $X$ lots of 3 ． <br> －Children exposed to real life examples of equal groups to consolidate understanding | －Children recall times tables by rote and then apply this to solve multiplication problems e．g． $2 \times 3=$ $\qquad$ <br> －Use multiplication facts to complete sequences and missing number problems | double，multiplication，multiply，multiplied by，equal groups，arrays，fact family， inverse |


|  | - Create arrays using cubes <br> - Use Base 10 to represent multiplication as repeated addition e.g. $327 \times 4$ |  | e.g. 2, $\qquad$ 6, 8, $\qquad$ 12 <br> - Children can partition numbers to tens and ones when completing more complex multiplication sentences $\begin{aligned} & e . g, 4 \times 15= \\ & 4 \times 10= \\ & 4 \times 5= \end{aligned}$ <br> - Use column method of multiplication where necessary for 2 digit and 3 digit numbers. |  |
| :---: | :---: | :---: | :---: | :---: |
| Division | - See division as grouping and sharing <br> 10 has been shared into 2 groups of 5 . 10 has been shared into 5 groups of 2 . <br> - Use of arrays to link to 'fact families' of multiplication and division. <br> - Use stem sentences e.g. "If I know $3 \times 5=15$ then I know $5 \times 3=15$ and $I$ also know 15 $\div 3=5$ and $15 \div 5=3$." | - Use pictures and shapes to represent division calculations. <br> There are 10 muffins. <br> There are $\square$ muffins in each group. <br> There are $\square$ groups. $10 \div 2=$ $\square$ $\square$ $] \times 2=10$ <br> - Children can use dots (two dots per square) to represent objects in a problem, using circles to split them into groups. <br> E.g. Rose has 12 apples. She shares them with 4 friends. How | - Once chn are secure with division in a concrete and pictorial sense, they can move onto abstract calculations. $12 \div 4=3$ <br> - Chn can then make 'fact families' to see connection between multiplication and division facts. $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12 \div 4=3 \\ & 12 \div 3=4 \end{aligned}$ <br> Use of triangles to represent numbers could be used. <br> - Once fluent in this, chn could move onto missing number problems which | equal groups, divide, divided by, divided into, half, share, share equally, equal groups, fact family, inverse |



